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Introduction  

Nanotechnology has been widely utilized in various 
fields, such as food industry, consumer products and medi-
cal applications (1). Nanoparticles (NPs) act as carriers for 

Abstract

Aim. With the characteristics such as low toxicity, high total 
surface, ability to inhibit the growth of pathogenic microorganisms, 
zinc oxide nanoparticles (ZnO NPs), as one of the metallic nanopar-
ticles, have been chosen as an antibacterial agent to treat various skin 
infections. The present study was aimed to determine the antibacterial 
potential of ZnO NPs on Bacillus subtilis, the Gram-positive bacterium 
that can cause skin and wound infections.

Methods. B. subtilis was exposed to 5 to 150 μg/mL of ZnO NPs 
for 24 h. The parameters employed to evaluate the antimicrobial poten-
tial of ZnO NPs   were the growth inhibitory effect on B. subtilis, the 
surface interaction of ZnO NPs on the bacterial cell wall, and also the 
morphological alterations in B. subtilis induced by ZnO NPs. 

Results. The results demonstrated a significant (p <0.05) inhibi-
tion of ZnO NPs on B. subtilis growth and it was in a dose-dependent 
manner for all the tested concentrations of ZnO NPs from 5 to 150 μg/
mL at 24 h. Fourier transformed infrared (FTIR) spectrum confirmed 
the involvement of polysaccharides and polypeptides of bacterial cell 
wall in surface binding of ZnO NPs on bacteria. The scanning electron 
microscopy (SEM) was used to visualize the morphological changes 
B. subtilis illustrated several surface alterations such as distortion of 
cell membrane, roughening of cell surface, aggregation and bending 
of cells, as well as, the cell rupture upon interacting with ZnO NPs 
for 24 h. 

Conclusion. The results indicated the potential of ZnO NPs to 
be used as an antibacterial agent against B. subtilis. The findings of 
the present study might bring insights to incorporate ZnO NPs as an 
antibacterial agent in the topical applications against the infections 

caused by B. subtilis. Clin Ter 2023; 174 (1):61-66 doi: 10.7417/
CT.2023.2498
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antibiotics with promising results on tackling the pathogen 
themselves (2). The application of NPs has become an alter-
native to conventional therapies in treating infections cau-
sed by the multidrug resistant and intracellular pathogens. 
Examples of NPs with bactericidal properties are CuO NPs, 
TiO

2
 NPs, Au NPs, ZnO NPs and Fe

3
O

2 
NPs (3-5).

ZnO NPs are popularly utilized in biomedical applica-
tions including drug delivery, antibacterial, anti-inflamma-
tion, anticancer treatment, wound healing, and bio-imaging 
(6-8) due to the unique properties such as antibacterial, 
antifungal, UV filtering, anticorrosive and most importantly, 
low toxicity to humans (9, 10). 

Bacillus subtilis is a motile, rod-shaped, non-encapsu-
lated Gram positive bacterium (11). The bacterium form 
endospore and thus can remain dormancy, it can survive 
in a diverse environment (12-14) as well as against stress 
condition (15). 

Generally, B. subtilis is not pathogenic to humans (16). 
However, previous studies have reported that B. subtilis 
were accounted for food poisoning (17), bacteraemia in 
immunocompromised individuals (18), and dermatitis (19). 
Researchers have reported the detection of B. subtilis from 
multiple surgical wound-drainage sites, wound of a burn 
patient and breast prosthesis (11, 20, 21). Since most of 
the reported cases happened after secondary infection, B. 
subtilis was known as an opportunistic pathogen that can 
lead to nosocomial infection (11, 22). As the nosocomial 
infection by B. subtilis can progress into a serious concern 
to the public, it requires an urgent medical attention to curb 
the antibiotic resistance due to nosocomial infections (11).

Due to the proven advantage such as profound antimicro-
bial activity and low toxicity to human, ZnO NPs can be used 
as an antibacterial agent in wound dresser or wound batch 
(23). Hence, the present study investigated the antibacterial 
effects of ZnO NPs on B. subtilis through assessing the 
growth inhibitory effect, interaction of ZnO NPs on bacterial 
surface and the subsequent morphological damages caused 
by ZnO NPs. The findings of this study bring supportive 
insights to incorporate ZnO NPs as an antibacterial agent 
in topical applications and wound dressings to curb the 
infections caused by B. subtilis.
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Materials and Methods
	
Characterization of ZnO NPs

Zinc oxide nano-powder with the particle size <100 nm 
was purchased from Sigma-Aldrich, Malaysia. The size 
and structure of the nanoparticle were determined using a 
scanning electron microscope (JSM-6701F, JOEL, Japan), 
operated at an acceleration voltage of 4 kV with a working 
distance of 4.7 mm. In addition, the energy dispersive X-ray 
(EDX) spectrum was used to confirm the chemical compo-
sition of ZnO NPs. 

Preparation of ZnO NPs stock solution

The stock solution of ZnO NPs (300 µg/mL) was prepa-
red by dissolving a 9 mg of ZnO NPs powder in a 30 mL of 
Luria-Bertani broth (LB broth) followed by ultrasonication 
for 30 min at 37 kHz to make the solution homogenous. The 
solution was diluted with LB broth to yield the following 
working concentrations, 5 µg/mL (1:60 dilution), 10 µg/
mL (1:30 dilution), 25 µg/mL (1:12 dilution), 50 µg/mL 
(1:6 dilution), 100 µg/mL (1:3 dilution) and 150 µg/mL 
(1:2 dilution). 

Bacterial Growth Curve

The bacterium B. subtilis was cultured in Luria-Bertani 
broth (LB broth) in a 15 mL falcon tube at 37 oC. The growth 
rate of B. subtilis was measured through the turbidity reading 
of the culture suspension at 600 nm using UV spectrophoto-
meter (Implen, C40, Germany) at a range of time intervals, 0, 
2 4, 6, 8, 24 and 48 h. A growth curve was then constructed 
from the readings to determine the mid-log phase.

Exposure of Bacteria to ZnO NPs

The six different working concentrations of ZnO NPs (5, 
10, 25, 50, 100 and 150 μg/mL) were prepared by diluting the 
ZnO NPs stock solution using LB broth. A 5 ml of bacteria 
suspension that was incubated to mid-log phase for 4 h with 
an initial OD

600
 of 0.05 was exposed to 5, 10, 25, 50, 100 and 

150 μg/mL of ZnO NPs in 15 mL falcon tube and incubated 
for 24 h at 37°C without shaking. Bacteria culture without 
the addition of ZnO NPs was treated as the negative control, 
while the bacteria culture treated with antibiotic Ciprofloxa-
cin (500 µg/mL) was considered as a positive control.

Investigation of Bacterial Growth Inhibition

Turbidity method was employed to examine the bacterio-
static effect of ZnO NPs. The turbidity of the ZnO NPs-treated 
bacterial suspensions as well as the negative and positive con-
trols were measured using UV-vis spectrophotometer (Implen, 
C40, Germany) at OD

600
. The OD

600 
of ZnO NPs suspension for 

each concentration was measured and subtracted from the test 
reading to eliminate the interference from NPs. The percentage 
of inhibition in the bacterial growth after 24 h of exposure to 
ZnO NPs was evaluated by using the equation below:

Interaction of ZnO NPs on Bacterial Cell Wall

The FTIR spectroscopy was performed to identify the 
involvement of the biomolecules from the bacterial cell wall 
in binding of ZnO NPs on bacteria. A volume of 5 mL of 
bacteria cell suspension was treated with 150 μg/mL ZnO 
NPs for 24 h along with negative control (untreated bacterial 
suspension) were centrifuged for 10 min at 6000 g. The pellet 
was washed with 1X PBS for three times and freeze-dried. 
Then the freeze dried bacteria powder was subjected to FTIR 
(FTIR, Nicoler IS 10, United States of America) analysis 
over the range of 4000 to 400 cm-1.

Scanning electron microscopy

The scanning electron microscope (SEM, JSM-6701F, 
JOEL, Japan) was chosen to view the morphological changes 
induced on B. subtilis upon treating with ZnO NPs for 24 
h. A 15 ml volume of the negative control and 150 µg/mL 
ZnO NPs treated bacterial suspension were centrifuged for 
10 min at 6000 g. The pellet was washed with 1X PBS fol-
lowed by fixation with 2.5 % glutaraldehyde for overnight. 
The pellet was then dehydrated with a series of ethanol at 
the following concentration 50%, 75%, 95% and 100%. The 
pellets then were freeze-dried and subjected to scanning 
electron microscopy.

Statistical Analysis

Statistical analysis was performed to analyse the va-
riance induced by six distinct concentrations of ZnO NPs 
on the bacteria cells interacted with ZnO NPs for 24 h. The 
experiments were done in triplicates (n=3) and the data are 
presented as mean ± standard deviation.

 
Results and Discussion

Characterization of ZnO NPs

The SEM observation of ZnO nanopowder confirmed 
mixture of rod and spherical shaped particles with an ave-
rage size of 49.85 nm (Fig. 1(A). EDX analysis confirmed 
the presence of zinc and oxygen in the ZnO NPs powder 
(Fig. 1(B). 

Growth Curve of Bacterium

The growth pattern of B. subtilis was determined by 
plotting the growth curve as shown in Figure 2. The bacterial 
cells were in the lag phase from 0 to 2 h, the log phase of 
B. subtilis was started at 2 h and lasted until 7 h, and the 
mid-log phase was identified at 4 h. The growth of B. subtilis 
declined from 24 to 48 h. During the lag phase the growth 
will be slow as the bacteria take time to adapt to the medium 
(24). According to Rolfe et al. (2011) (25), each individual 
cells will increase in size only, not the cell number despite 
there are ample nutrients available. During the log phase, 
the bacteria begins to divide actively by binary fission (26) 
and attain their maximal growth rate. The stationary phase 
usually occur at 18 h to 24 h where the waste products start Percentage of growth inhibition =

OD
control

 – OD
test

OD
control

×100%
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to pile up and the nutrients begin to deplete (26, 27). After 24 
h, the bacterial population steps into the death phase where 
they drop cell-division ability and the number of live cells 
reduce (26). In the present study, the bacteria cells were 
exposed to ZnO NPs at the mid-log phase (4 h) as the cells 
are most active in terms of metabolism and multiplication 
at their mid-exponential phase (24, 28).

Growth Inhibition Test

The results confirmed a significant (p <0.05) inhibition 
of ZnO NPs on B. subtilis growth and it was in a dose-
dependent manner for all the tested concentrations of ZnO 
NPs from 5 to 150 μg/mL at 24 h. The percentage of growth 
inhibition for 5, 10, 25, 50, 100, 150 μg/mL were reported to 
be 11.88 ± 0.04, 16.66 ± 0.80, 28.55 ± 0.36, 33.57 ± 0.38, 
47.52 ± 1.53, 70.09 ± 1.5%, respectively (Fig. 3). Meanwhi-
le, the positive control showed 92.96 ± 0.19% of inhibition. 
Further, the results were observed to be dose dependant as 
the percentage of growth inhibition of B. subtilis increased 
with the increasing concentrations of ZnO NPs. 

Previous studies reported similar findings on the growth 
inhibition effects of ZnO NPs on bacteria. Jones et al. (29) re-
ported a dose-dependent growth inhibition on Gram positive 
bacteria, B. subtilis, Staphylococcus aureus, Staphylococcus 
epidermidis and Enterococcus faecalis with increasing con-
centration of ZnO NPs. The highest percentage of growth 
inhibition on all the tested bacteria was reported to be 95% 
at 400 µg/mL ZnO NPs for 10 h of treatment. Singh and 
Nanda (30) revealed a dose dependant growth inhibition 
of ZnO NPs on Aspergillus niger for 12.5 to 50 µg/mL of 
ZnO NPs at 24 h.

Besides, a study on both Gram positive and Gram ne-
gative bacteria such as B. subtilis, Streptococcus pyogenes, 
E. faecalis, Bacillus cereus, Proteus vulgaris, Escherichia 
coli, Pseudomonas alcaligenes, Enterobacter aerogenes, 
and  Shigella flexneri  reported 95% of growth inhibition 
when  exposed to 320 to 560 μg/mL of ZnO NPs at 8 h 
(31). Azizi-Lalabadi et al. (32) illustrated the antibacterial 
properties of ZnO and TiO

2 
nanomaterials with zeolite 

against Listeria monocytogenes, S.aureus, Escherichia coli 

Fig. 1. Characterisation of ZnO NPs under (A) SEM with 50,000X magnification and (B) EDX spectrum showing the presence of zinc and 
oxygen in ZnO NPs powder.

Fig. 2. Growth curve of B. subtilis in Luria-Bertani broth (LB broth) 
at 37oC

Fig. 3. Percentage of growth inhibition by turbidity method on B. sub-
tilis upon treatment with different concentrations of ZnO NPs for 24 
h at 37℃ in Luria-Bertani broth. * indicates the significant difference 
between negative control and the bacterial suspensions treated with 
different concentrations of ZnO NPs at p<0.05.
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O157:H7 and Pseudomonas fluorescens. While Qiu et al. 
(2020) (33) showed the antibacterial effect of calcinied 
ZnO NPs and CuO NPs under the exposure of UV on E. 
coli and S. aureus. Meanwhile, Nilavukkarasi et al. (34), 
demonstrated the intense antibacterial effects of ZnO NPs 
synthesised from the leaves Capparis zeylanica on the te-
sted microorganisms included S. epidermidis, E. faecalis, 
Shigella dysenteriae, Candida albicans, Aspergillus niger 
and Salmonella paratyphi. 

Surface Interaction of ZnO NPs on Bacterial Cell Wall 

FTIR analysis was aimed to examine the functional 
groups of bacterial cell surface that were involved in surface 
interaction of ZnO NPs on bacterial cell wall. It was done 
by comparing the peaks between the negative control and 
bacterial suspension treated with 150 μg/mL ZnO NPs for 24 
h. Based on Fig. 4, the negative control demonstrated O-H 
and N-H stretching at 3447 cm-1, C-H stretching at 2373 and 
2345 cm-1, C=O stretching at 1639 cm-1, carbon moieties at 
556 cm-1. Meanwhile, the spectrum of ZnO NPs treated bac-
terial suspension showed O-H and N-H stretching (3447 to 
3436 cm-1), C-N stretching of an amine group (2373 to 2370 
cm-1), C=O stretching (1639 to 1637 cm-1), Zn-O stretching 
(556 to 582 cm-1). According to Melin et al. (35) and Gorgulu 
et al. (36), the regions between 3447 cm-1 and 3325 cm-1 
were dominated by the O-H and N-H stretching vibration 
from proteins and polysaccharides. The shift of peak from 
2373 cm-1 to 2370 cm-1 was dominated by the C-N stretch-
ing from the polypeptides (37). Further, the shifting of the 
peak from 1639 cm-1 to 1637 cm-1, corresponded with C=O 
stretching of the polypeptide and protein backbone (38). 
The last shifting of the peak, from 556 cm-1 to 582 cm-1, cor-
responded to glycogen (38). Nevertheless, Arshad et al. (39) 
also correlated this region to the Zn-O bond. Overall, FTIR 
spectrum confirmed the involvement of polysaccharides and 
polypeptides of bacterial cell wall in surface binding of ZnO 
NPs on bacterial cell surface (Table 1).

Alterations in Bacterial Morphology 

“The scanning electron microscopy (SEM) was used 
to visualize the morphological changes in B. subtilis, il-
lustrated several surface alterations such as distortion of  
cell membrane, roughening of cell surface, aggregation 
and bending of cells, as well as the cell rupture upon in-
teracting with ZnO NPs for 24 h (Fig. 5). Similar findings 
were reported on E. coli (40, 41), Bacillus cereus (42), 
Chlorella vulgaris (43) after treating with different types of 
metallic NPs. According to Djearamane et al. (44), changes 
in morphology, particularly the aggregation of the cells 
was aimed to promote self-defence and thus lesser total 
surface area could be engaged for ZnO NPs to bind. The 
successful accumulation of NPs on the cell surface affects 
the cell wall integrity and also may lead to their uptake into 
the cell (43).

 The antibacterial effect of ZnO NPs begins after the 
NPs attach to the surface of the bacterial cell wall (45). 
Liu et al. (46) proposed that Zn2+ ions leach out when the 
NPs are mixed with the LB medium before the attachment.
The subsequent interaction which involves the binding of 
the positively charged Zn2+ ion with both the –SH bonds 
in the cellular protein and the negatively charged functio-
nal groups of macromolecules (47, 48) will result in a 
series of physiological changes, such as disintegration of 
membrane, malfunction of cellular protein and genomic 
instability (2, 49, 50, 51). In addition, the mass production 
of reactive oxygen species (ROS) such as superoxide anion 
and hydrogen peroxide (41) results from the interaction of 
ZnO NPs constitutes the main reason for growth inhibition. 
Nevertheless, the bacterial defence mechanism, notably the 
expression of cytosolic protein and reductase (52) surge up 
to wipe out the ROS generated. However, when the amount 
of ROS exceeds the antioxidant enzymes, it will result in 
cell death (53).

Conclusion

The results of the present study indicated the potential 
of ZnO NPs to be used as an antibacterial agent against 
B. subtilis. The findings of the present study might bring 
insights to incorporate ZnO NPs as an antibacterial agent 
in the topical applications against the infections caused by 
B. subtilis.

Fig. 4. FTIR spectrum of (A) negative control (black) and (B) 150 μg/
mL ZnO NPs treated B. subtilis (blue).

Table 1. Possible involvement of biomolecules from bacterial cell wall 
in surface binding of ZnO NPs on bacteria  by FTIR analysis

Absorption (cm-1)
Molecular 
motion

Functional
group

Biomolecules

3447  3436
O-H and N-H 
stretching

Alcohol, 
amide A 

Proteins, poly-
saccharides

2373  2370
C-H stretching Alkenes Hydrocarbon 

1639  1637
C=O stretching, Amide I Polypeptide, 

protein back-
bone

556  582
Zn-O stretching Zinc oxide Glycogen 
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